Glossary


Allotropes
Some elements exist in several different structural forms, called allotropes. Each allotrope has different physical properties.


For more information on the Visual Elements image see the Uses and properties section below.

 

Glossary


Group
A vertical column in the periodic table. Members of a group typically have similar properties and electron configurations in their outer shell.


Period
A horizontal row in the periodic table. The atomic number of each element increases by one, reading from left to right.


Block
Elements are organised into blocks by the orbital type in which the outer electrons are found. These blocks are named for the characteristic spectra they produce: sharp (s), principal (p), diffuse (d), and fundamental (f).


Atomic number
The number of protons in an atom.


Electron configuration
The arrangements of electrons above the last (closed shell) noble gas.


Melting point
The temperature at which the solid–liquid phase change occurs.


Boiling point
The temperature at which the liquid–gas phase change occurs.


Sublimation
The transition of a substance directly from the solid to the gas phase without passing through a liquid phase.


Density (g cm−3)
Density is the mass of a substance that would fill 1 cm3 at room temperature.


Relative atomic mass
The mass of an atom relative to that of carbon-12. This is approximately the sum of the number of protons and neutrons in the nucleus. Where more than one isotope exists, the value given is the abundance weighted average.


Isotopes
Atoms of the same element with different numbers of neutrons.


CAS number
The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.


Fact box

Group Melting point 1246°C, 2275°F, 1519 K 
Period Boiling point 2061°C, 3742°F, 2334 K 
Block Density (g cm−3) 7.3 
Atomic number 25  Relative atomic mass 54.938  
State at 20°C Solid  Key isotopes 55Mn 
Electron configuration [Ar] 3d54s2  CAS number 7439-96-5 
ChemSpider ID 22372 ChemSpider is a free chemical structure database
 

Glossary


Image explanation

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture.


Appearance

The description of the element in its natural form.


Biological role

The role of the element in humans, animals and plants.


Natural abundance

Where the element is most commonly found in nature, and how it is sourced commercially.

Uses and properties

Image explanation
The image is of an antique electromagnet and a cow. The electromagnet is because manganese may have got its name from the Latin word for magnet. The cow reflects the importance of the element as a food supplement for grazing animals.
Appearance
A hard, brittle, silvery metal.
Uses
Manganese is too brittle to be of much use as a pure metal. It is mainly used in alloys, such as steel.

Steel contains about 1% manganese, to increase the strength and also improve workability and resistance to wear.

Manganese steel contains about 13% manganese. This is extremely strong and is used for railway tracks, safes, rifle barrels and prison bars.

Drinks cans are made of an alloy of aluminium with 1.5% manganese, to improve resistance to corrosion. With aluminium, antimony and copper it forms highly magnetic alloys.

Manganese(IV) oxide is used as a catalyst, a rubber additive and to decolourise glass that is coloured green by iron impurities. Manganese sulfate is used to make a fungicide. Manganese(II) oxide is a powerful oxidising agent and is used in quantitative analysis. It is also used to make fertilisers and ceramics.
Biological role
Manganese is an essential element in all known living organisms. Many types of enzymes contain manganese. For example, the enzyme responsible for converting water molecules to oxygen during photosynthesis contains four atoms of manganese.

Some soils have low levels of manganese and so it is added to some fertilisers and given as a food supplement to grazing animals.

The average human body contains about 12 milligrams of manganese. We take in about 4 milligrams each day from such foods as nuts, bran, wholegrain cereals, tea and parsley. Without it, bones grow spongier and break more easily. It is also essential for utilisation of vitamin B1.
Natural abundance
Manganese is the fifth most abundant metal in the Earth’s crust. Its minerals are widely distributed, with pyrolusite (manganese dioxide) and rhodochrosite (manganese carbonate) being the most common.

The main mining areas for manganese are in China, Africa, Australia and Gabon. The metal is obtained by reducing the oxide with sodium, magnesium or aluminium, or by the electrolysis of manganese sulfate.

Manganese nodules have been found on the floor of the oceans. These nodules contain about 24% manganese, along with smaller amounts of many other elements.
  Help text not available for this section currently

History

Manganese in the form of the black ore pyrolucite (manganese dioxide, MnO2) was used by the pre-historic cave painters of the Lascaux region of France around 30,000 years ago. In more recent times was used by glass makers to remove the pale greenish tint of natural glass.

In 1740, the Berlin glass technologist Johann Heinrich Pott investigated it chemically and showed that it contained no iron as has been assumed. From it he was able to make potassium permanganate (KMnO4), one of the strongest oxidising agents known. Several chemists in the 1700s tried unsuccessfully to isolate the metal component in pyrolusite. The first person to do this was the Swedish chemist and mineralogist Johan Gottlieb Gahn in 1774. However, a student at Vienna, Ignatius Kaim, had already described how he had produced manganese metal, in his dissertation written in 1771.
 
Glossary

Atomic radius, non-bonded
Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced. These values were determined using several different methods.


Covalent radius
Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination.


Electron affinity
The energy released when an electron is added to the neutral atom and a negative ion is formed.


Electronegativity (Pauling scale)
The tendency of an atom to attract electrons towards itself, expressed on a relative scale.


First ionisation energy
The minimum energy required to remove an electron from a neutral atom in its ground state.

Atomic data

Atomic radius, non-bonded (Å) 2.05 Covalent radius (Å) 1.29
Electron affinity (kJ mol−1) Not stable Electronegativity
(Pauling scale)
1.55
Ionisation energies
(kJ mol−1)
 
1st
717.274
2nd
1509.03
3rd
3248.468
4th
4940
5th
6985.5
6th
9224
7th
11501.342
8th
18766.4
 

Glossary


Common oxidation states

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic. Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge.


Isotopes

Atoms of the same element with different numbers of neutrons.


Key for isotopes


Half life
  y years
  d days
  h hours
  m minutes
  s seconds
Mode of decay
  α alpha particle emission
  β negative beta (electron) emission
  β+ positron emission
  EC orbital electron capture
  sf spontaneous fission
  ββ double beta emission
  ECEC double orbital electron capture

Oxidation states and isotopes

Common oxidation states 7, 6, 4, 3, 2, 0, -1
Isotopes Isotope Atomic mass Natural abundance (%) Half life Mode of decay
  55Mn 54.938 100
 

Glossary

Data for this section been provided by the British Geological Survey.


Relative supply risk

An integrated supply risk index from 1 (very low risk) to 10 (very high risk). This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.


Crustal abundance (ppm)

The number of atoms of the element per 1 million atoms of the Earth’s crust.


Recycling rate

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply.


Substitutability

The availability of suitable substitutes for a given commodity.
High = substitution not possible or very difficult.
Medium = substitution is possible but there may be an economic and/or performance impact
Low = substitution is possible with little or no economic and/or performance impact


Production concentration

The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply.


Reserve distribution

The percentage of the world reserves located in the country with the largest reserves. The higher the value, the larger risk there is to supply.


Political stability of top producer

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators.


Political stability of top reserve holder

A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators.


Supply risk

Relative supply risk 5.7
Crustal abundance (ppm) 774
Recycling rate (%) >30
Substitutability High
Production concentration (%) 33
Reserve distribution (%) 24
Top 3 producers
  • 1) China
  • 2) South Africa
  • 3) Australia
Top 3 reserve holders
  • 1) South Africa
  • 2) Ukraine
  • 3) Brazil
Political stability of top producer 24.1
Political stability of top reserve holder 44.3
 

Glossary


Specific heat capacity (J kg−1 K−1)

Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K.


Young's modulus

A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.


Shear modulus

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain.


Bulk modulus

A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume.


Vapour pressure

A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

Pressure and temperature data – advanced

Specific heat capacity
(J kg−1 K−1)
479 Young's modulus (GPa) Unknown
Shear modulus (GPa) Unknown Bulk modulus (GPa) 118
Vapour pressure  
Temperature (K)
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Pressure (Pa)
- - 5.55
x 10-7
0.00221 0.524 24.9 - - - - -
  Help text not available for this section currently

Podcasts

Listen to Manganese Podcast
Transcript :

Chemistry in its element: manganese


(Promo)

You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.

(End promo)

Chris Smith

Hello! This week to the element that lies at the root of plant photosynthesis, fights free radicals, strengthens steel, makes mysterious ocean floor nodules and even goes to mix up with magnesium. Here's Ron Caspi.

Ron Caspi

I always feel that manganese is sadly overlooked. It's the fifth most abundant metal in the Earth crust and the second most abundant transition metal after iron, but say, manganese and many people will think of the much more familiar magnesium. There is a good reason why the names of these two elements are so confusingly similar, but we'll get to that in a minute. There are more than 300 different minerals that contain manganese. Large terrestrial deposits are found in Australia, Gabon, South Africa, Brazil and Russia. Yet more fascinating are the mysterious three trillion tons of manganese nodules that cover great parts of the ocean floor. These nodules are never covered by the constantly accumulating sediment. They manage to always stay above the sediment, due to the constant pushing and turning by their keepers, the small animals that live on the ocean floor. Almost half a billion dollars were invested in developing mining techniques for the nodules, but they're found so deep, mostly at depth of 4 to 6 kilometres, that the mining is still not commercially viable.

Manganese is an extremely versatile element. It can exist in six different oxidation states. In nature, it is usually found in either its reduced +2 state, which easily dissolves in water or in the +4 state, which forms many types of insoluble oxides. The +3 form of manganese is used as a powerful weapon, by dry rot fungi that break down wood. Wood contains a lot of lignin, a polymer that is almost indestructible by biological systems; indestructible that is unless you use manganese. A fungal enzyme, manganese peroxidase, oxidizes manganese +2 atoms to manganese +3, which are then sent to the tiny spaces within the wood lattice. Manganese +3 is highly reactive and can break down the chemical bonds of lignin, making it available as food for the fungus. Fungi are not the only organisms that harness the power of manganese chemistry. Manganese is an essential element for all life forms. It is absolutely necessary for the activity of several enzymes that must bind a manganese atom before they can function, including superoxide dismutase, an enzyme that protects us from the harmful effects of toxic oxygen radicals.

One of the most important reactions in biology, photosynthesis, is completely dependent on manganese. It is the star player in the reaction centre of photosystem II where water molecules are converted to oxygen. Without manganese, there would be no photosynthesis as we know it and there would be no oxygen in the atmosphere. While biology discovered manganese early on, it took humankind a bit longer. Already in ancient Egypt, glass blowers who got tired of their greenish glass founded by adding small amounts of certain minerals to the mix, they could make perfectly clear glass. They didn't realize it at that time, but these minerals, which were affectionately named, Sapo vitri or glass soap were manganese oxides. Excellent ores were found in the region of Magnesia, the region of northern Greece, just south of Macedonia, and this is how the trouble with manganese names started. Different ores from the region, which included both magnesium and manganese, were simply called magnesia. In the 1600s, the term magnesia alba or white magnesia was adopted for magnesium minerals, while magnesia nigra or black magnesia was used for the darker manganese oxides. By the way, the famous magnetic minerals that were discovered in that region were named Lapis magnis or stone of magnesia, which eventually became today's magnet. For a while, there was a total mix up concerning manganese and magnesium, but in the late 18th Century, a group of Swedish chemists, headed by Torbern Bergman were convinced that manganese is its own element. In 1774, Scheele, a member of the group presented these conclusions to the Stockholm Academy and later that year, Johann Gahn, another member became the first man to purify manganese and prove that it is an element. It took a few more years, but by 1807, the name manganese was accepted by all.

Today, manganese is used for countless industrial purposes. By far, the most important one is in steel making. When Sir Henry Bessemer invented the process of steel making in 1856, his steel broke up when hot rolled or forged; the problem was solved later that year, when Robert Foster Mushet, another Englishman, discovered that adding small amounts of manganese to the molten iron solves the problem. Since manganese has a greater affinity for sulphur than does iron, it converts the low-melting iron sulphide in steel to high-melting manganese sulphide. Since then, all steel contains manganese. In fact, about 90% of all Manganese produced today, is used in steel.

From the mysterious nodules at the bottom of the ocean to the decay of wood, from ancient glassblowing to modern steel-making, from fighting oxygen radicals to photosynthesis, manganese has always played a fascinating role in the chemistry, geology, and biology of our planet, a role that is seriously under appreciated.

Chris Smith

Ron Caspi. Next time, to a cheeky chemical with some practical and also some less than practical uses that is unless you're a practical joker.

Andrea Sella

Alloys containing bismuth were used for safety valves and boilers, melting if the temperature rose too high and a classic prank invented in Victorian times was to cast spoons from an alloy consisting of 8 parts bismuth, 5 parts lead and 3 parts tin. Its melting point is low enough for the spoon to vanish into a cup of hot tea to the astonishment of the unsuspected visitor.

Chris Smith

Andrea Sella, who'll be revealing the story of bismuth on next week's Chemistry in its element. I hope you can join us. I am Chris Smith, thank you for listening and goodbye!

(Promo)

Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com. There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements.

(End promo)
  Help text not available for this section currently
  Help Text

Resources

Learn Chemistry: Your single route to hundreds of free-to-access chemistry teaching resources.
 

Terms & Conditions


Images © Murray Robertson 1999-2011
Text © The Royal Society of Chemistry 1999-2011

Welcome to "A Visual Interpretation of The Table of Elements", the most striking version of the periodic table on the web. This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.


Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.


The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC. The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited.


If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask.


Commercial use of the Images will be charged at a rate based on the particular use, prices on application. In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.


The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.


In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site. Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.


We hope that you enjoy your visit to this Site. We welcome your feedback.

References

Visual Elements images and videos
© Murray Robertson 1998-2017.

 

Data

W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, accessed December 2014.
Tables of Physical & Chemical Constants, Kaye & Laby Online, 16th edition, 1995. Version 1.0 (2005), accessed December 2014.
J. S. Coursey, D. J. Schwab, J. J. Tsai, and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1), 2015, National Institute of Standards and Technology, Gaithersburg, MD, accessed November 2016.
T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth, London, 1954.

 

Uses and properties

John Emsley, Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, New York, 2nd Edition, 2011.
Thomas Jefferson National Accelerator Facility - Office of Science Education, It’s Elemental - The Periodic Table of Elements, accessed December 2014.
Periodic Table of Videos, accessed December 2014.

 

Supply risk data

Derived in part from material provided by the British Geological Survey © NERC.

 

History text

Elements 1-112, 114, 116 and 117 © John Emsley 2012. Elements 113, 115, 117 and 118 © Royal Society of Chemistry 2017.

 

Podcasts

Produced by The Naked Scientists.

 

Periodic Table of Videos

Created by video journalist Brady Haran working with chemists at The University of Nottingham.